26th World Gas Conference

1 – 5 June 2015 – Paris, France

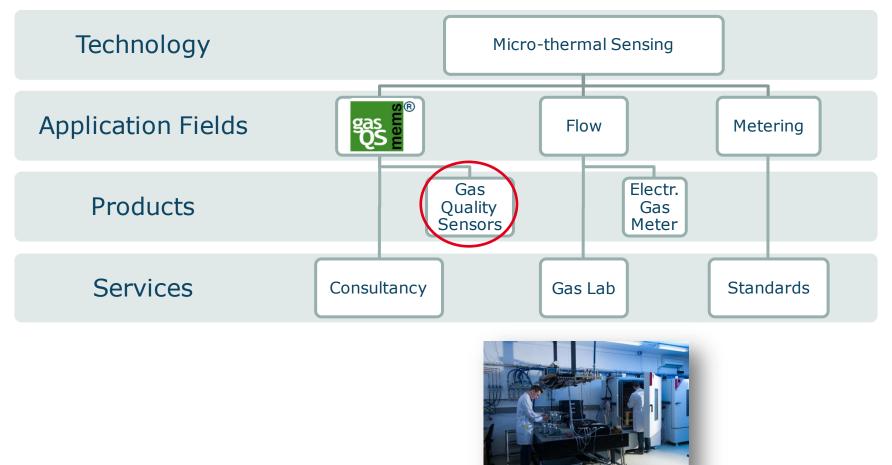
TS WOC 5-5

New Gas Quality Sensor for « Mass Market » Applications
Dr. Philippe Prêtre
MEMS AG, Switzerland

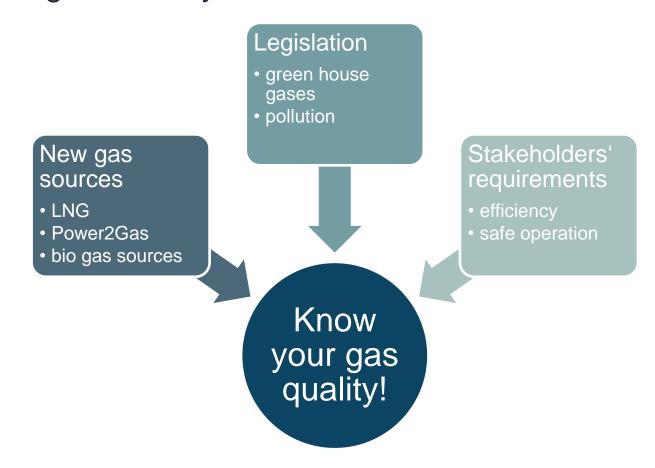
MEMS AG

- Matter Engineering for Metering Systems alias
- Micro Electro-Mechanical Systems
- •since 2003
- Employees: 16
- www.mems.ch

- Gas measuring technologies
- Electronics developments



Bruggerstrasse 30 5413 Birmenstorf Switzerland



MEMS AG: Gas Measuring Technologies

Gas quality, a growing concern for end users?

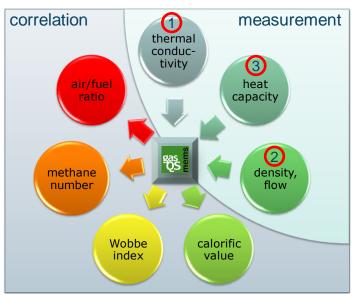
• Why gas quality sensors for the gas industry?

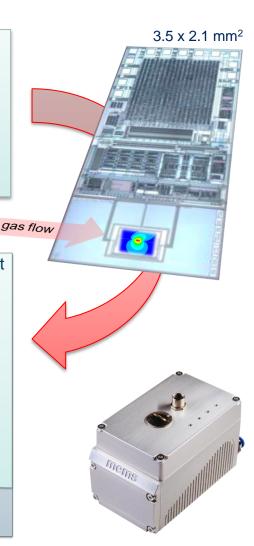
Gas quality sensors today

- Prozess gas chromatograph
 - gas composition
 - re-calibration needed
 - slow, fragile, bulky
 - calibration gases needed
 - expensive, high maintenance costs

- physical sum parameters
- higher (correlation) errors
- fast, ruggedised
- low maintenace costs

Source: ABB

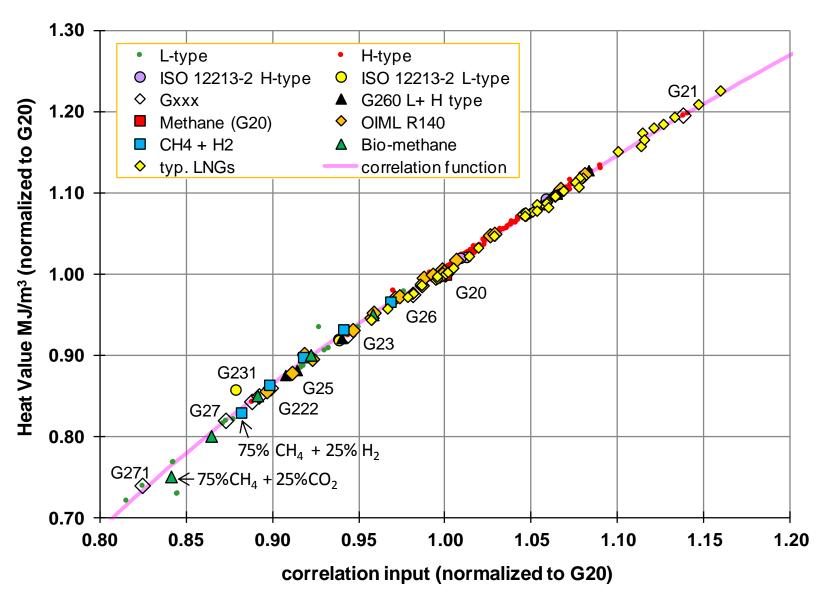

Available sensor technologies


Technology	Measured quantity	Pros +	Cons -	Costs	Main- tenance	Size	Robust- ness	
Gas chroma- tographs	gas composition	high accuracy	not for all gas types	high	high	large	low	
Calorimeters	Wobbe, calorific value	direct measurement, no limitation on gas quality	Only Wobbe, calorific value	high	high	large	low	
Optical	gas composition	high selectivity	limited gas range	high	medium	medium	low	
Correlative methods	physical sum parameters	response time	reduced accuracy	high	low	medium	medium	
No devices available yet!				low	low	small	high	

Micro-thermal chip technology

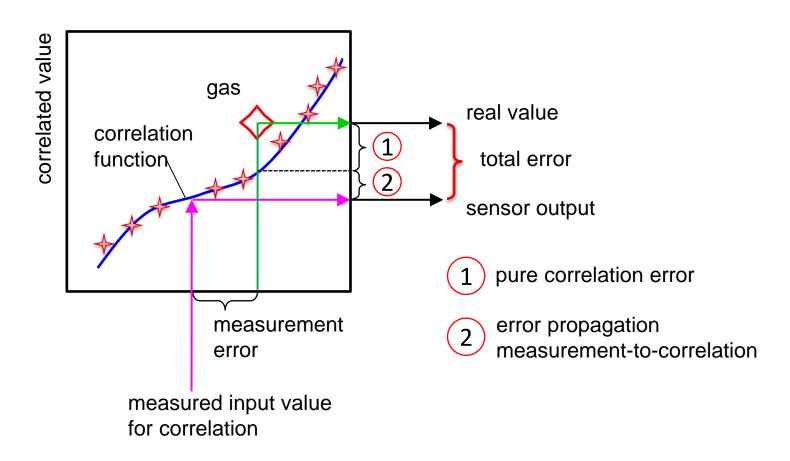
CMOS chip technology

- fully integrated hot-wire anemometer
- standard industrial production process
- · potentially cheap


Gas quality sensing

- correlative measurement method
- IP owned by MEMS AG
- Technology registered as gasQS[®]

Advantages


- fast response
- · compact size
- robustness
- low maintenace
- no re-calibration
- · no reference gas
- ease of integration into a control system

Correlation example: heat value

Error propagation

Performance = correlation error + measurement error

Performance

Gas quality	Accuracy	Stability
Calorific value	2 % rel.	0.15% rel.
Methane number	+/- 3 abs	+/- 2 abs
Wobbe index	2.5% rel.	0.25% rel.
Density	1.5% rel.	0.15% rel.
Gas temperature	+/- 0.5 K	+/- 0.1 K
Thermal conduct.	1 % rel.	0.3 % rel.
Gas flow ¹⁾		
Gas components ²⁾		

technology is used elsewhere as electronic gas meter. Accuracy depending on turn down ratio, according to MID in case of the gas meter

binary mixtures are measureable to within 0.5-1% absolute concentration of each component (e.g. CH₄ content of bio-gas)

Correlative measurement methods

EMC500: > 20'000 \$

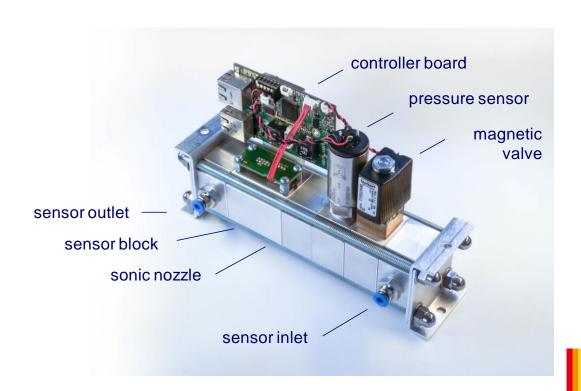
Correlative Measurement Principle							
Input 1	Input 2	Input 3					
dielectric const.	C _{sound}	CO ₂ content					
$c_{sound} (p_1)$	$c_{sound} (p_2)$	CO ₂ content					
κ (T ₁)	κ (T ₂)	C _{sound}					
ж	c_p	η					
κ	IR absorption (non-dispersive)						
κ	IR absorption (λ_1)	IR absorption (λ_2)					
gasQS							
К	sonic nozzle	CMOS sensor					

Gas Lab Q1: > 20'000 \$

Source: Elster

Available sensor technologies

Technology	Measured quantity	Pros +	Cons -	Costs	Main- tenance	Size	Robust- ness	
Gas chroma- tographs	gas composition	high accuracy	not for all gas types	high			low	
Optical	gas composition	high selectivity	limited gas range		medium	medium		
Correlative methods	physical sum parameters	response time	reduced accuracy			medium	medium	
Now available!				low	low	small	high	



competitive positioning of the gasQS technology

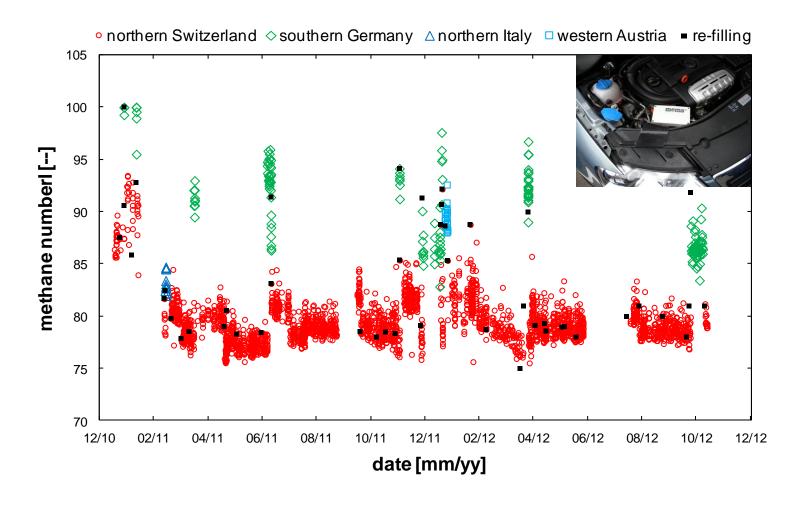
Engineering samples

Application specific engineering sample available @ MEMS

OEM sensor version

- Samples available @ MEMS
- compact (100 x 60 x 62 mm³)
- for field tests
- ease of operation
- support by MEMS
- service package: 25 k€

Application matrix


e mems (S)	Heat Value	Wobbe Index	Air/Fuel Ratio	Methane Number	Physical Properties	Binary Mixtures	Custo- mized	Flow
Research	x	x	х	x	x	x	×	х
Natural Gas Vehicles NGV								
• CNG	х			×				
• LNG	X			x				
Co-Generation	х		x	x				
Fuel Cells			×					×
Combustion								
• Boilers		x						
• Burners	х		x					
Bio Gas Plants	X					CO2/CH4		
Power-2-Gas						H ₂ /CH ₄		
Gas Distribution Networks	X							
Instrumentation	X	x	x	x	x	x	х	х
OEM Products	х	x	x	x	x	x	х	х

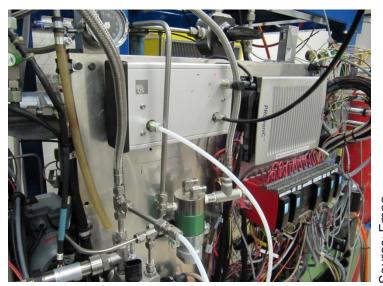
X usually asked for in this application

X already implemented / tested by MEMS

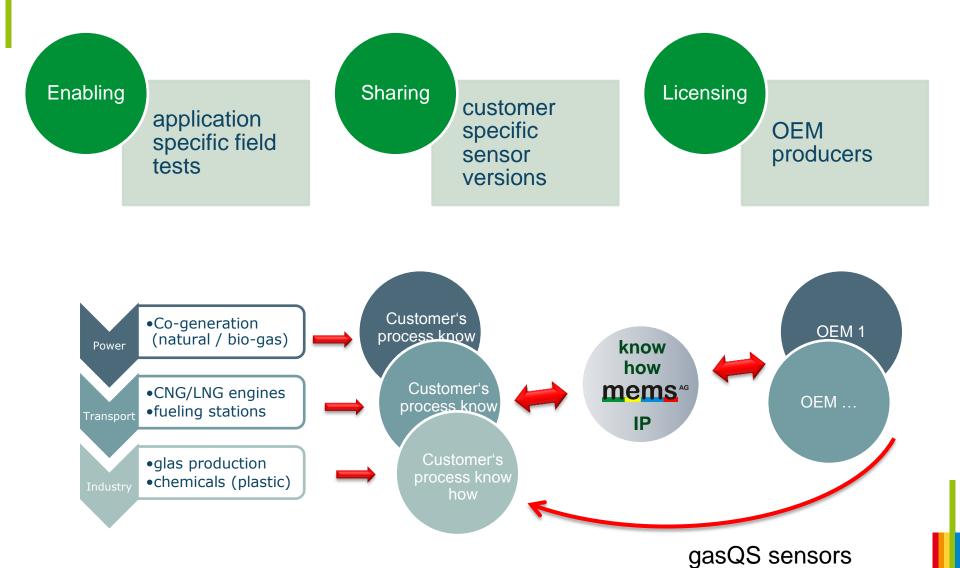
Long term road test

Hard to predict mixing effects after re-fuelling

gasQS for fuel cells



ource: He


- Reformation of natural gas for fuel cells:
 - air number determination for different gas qualities
 - air/gas ratio control
 - improved efficiency, life-time extension

Research: gas quality vs. modern gas engine concepts

- Methane number as traditional gas quality indicator for nock:
 - does it reflect modern engine set-ups?
 - isn't there any better indicator for gas quality?
- Research program together with Empa, Switzerland

Market penetration

Contact

Come and visit us at booth K58!

For further information, please contact philippe.pretre@mems.ch +41 56 470 92 02

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden.

Copyright © 2015 MEMS AG, Birmenstorf, Switzerland